The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves
نویسندگان
چکیده
[1] A coupled biophysical model is used to examine the impact of the great Arctic cyclone of early August 2012 on the marine planktonic ecosystem in the Pacific sector of the Arctic Ocean (PSA). Model results indicate that the cyclone influences the marine planktonic ecosystem by enhancing productivity on the shelves of the Chukchi, East Siberian, and Laptev seas during the storm. Although the cyclone's passage in the PSA lasted only a few days, the simulated biological effects on the shelves last 1 month or longer. At some locations on the shelves, primary productivity (PP) increases by up to 90% and phytoplankton biomass by up to 40% in the wake of the cyclone. The increase in zooplankton biomass is up to 18% on 31 August and remains 10% on 15 September, more than 1 month after the storm. In the central PSA, however, model simulations indicate a decrease in PP and plankton biomass. The biological gain on the shelves and loss in the central PSA are linked to two factors. (1) The cyclone enhances mixing in the upper ocean, which increases nutrient availability in the surface waters of the shelves; enhanced mixing in the central PSA does not increase productivity because nutrients there are mostly depleted through summer draw down by the time of the cyclone's passage. (2) The cyclone also induces divergence, resulting from the cyclone's low-pressure system that drives cyclonic sea ice and upper ocean circulation, which transports more plankton biomass onto the shelves from the central PSA. The simulated biological gain on the shelves is greater than the loss in the central PSA, and therefore, the production on average over the entire PSA is increased by the cyclone. Because the gain on the shelves is offset by the loss in the central PSA, the average increase over the entire PSA is moderate and lasts only about 10 days. The generally positive impact of cyclones on the marine ecosystem in the Arctic, particularly on the shelves, is likely to grow with increasing summer cyclone activity if the Arctic continues to warm and the ice cover continues to shrink.
منابع مشابه
The impact of an intense summer cyclone on 2012 Arctic sea ice retreat
[1] This model study examines the impact of an intense early August cyclone on the 2012 record low Arctic sea ice extent. The cyclone passed when Arctic sea ice was thin and the simulated Arctic ice volume had already declined ~40% from the 2007–2011 mean. The thin sea ice pack and the presence of ocean heat in the near surface temperature maximum layer created conditions that made the ice part...
متن کاملSeasonal differences in the response of Arctic cyclones to climate change in CESM1
Unprecedented warming in the Arctic has led to a dramatic reduction in both the extent and thickness of Arctic sea ice (Stroeve et al. 2011), opening up opportunities for business in diverse sectors such as fossil fuel and mineral extraction, shipping and tourism (Jung et al. 2016). Industrial activities in the Arctic are expected to be subject to high levels of investment over the coming decad...
متن کاملSeasonal and spatial distribution of particulate organic matter (POM) in the Chukchi and Beaufort Seas
As part of the Western Arctic Shelf–Basin Interactions (SBI) project, the production and fate of organic carbon and nitrogen from the Chukchi and Beaufort Sea shelves were investigated during spring (5 May–15 June) and summer (15 July–25 August) cruises in 2002. Seasonal observations of suspended particulate organic carbon (POC) and nitrogen (PON) and large-particle (453mm) size class suggest t...
متن کاملArctic Ocean Circulation Patterns Revealed by GRACE
Measurements of ocean bottom pressure (OBP) anomalies from the satellitemissionGravity Recovery and Climate Experiment (GRACE), complemented by information from two ocean models, are used to investigate the variations and distribution of the Arctic Ocean mass from 2002 through 2011. The forcing and dynamics associated with the observed OBP changes are explored. Major findings are the identifica...
متن کاملNew view of Arctic cyclone activity from the Arctic system reanalysis
Arctic cyclone activity is analyzed in 11 year (2000–2010), 3-hourly output from the Arctic System Reanalysis (ASR) interim version. Compared to the global modern era reanalyses (European Centre for Medium-Range Weather Forecasts Reanalysis (ERA)-Interim, Modern Era Retrospective Analysis for Research and Applications, and National Centers for Environmental Prediction-Climate Forecast System Re...
متن کامل